Filina A. A. (Scientific research center of supercomputers and neurocomputers, Taganrog, Russia), Nikitina A. V. (Don State Technical University, Rostov-onDon, Russia), Lyashenko T. V. (Southern Federal University, Taganrog, Russia). Mathematical modeling of the ichthyological process in shallow water at it microplastics pollution based on a stochastic approach ${ }^{1}$.

The system of deterministic equations describing the processes of microplastic pollution influence in shallow water on the growth rate and development of a commercial fish population has the form:

$$
\left(P_{i}\right)_{t}^{\prime}+\operatorname{div}\left(\mathbf{u} P_{i}\right)=\mu_{i} \Delta P_{i}+\varphi_{i}, i \in \overline{1,7}
$$

where P_{i} is the concentration of i-th component: 1,2 are phytoplankton (Chlorella vulgaris Beijer green algae and its metabolite), 3 is the biogenic substance, 4 is the zooplankton, 5 is the commercial fish (Abramis brama bream), 6,7 are microand nanoplastics; \mathbf{u} is the vector of water flow velocity; μ_{i} are diffusion coefficients; φ_{i} is a chemical and biological source [1].

The theorem. Let the equation of the considered system at $i=5$ taking into account the environment fluctuations have the form: $\dot{P}_{5}=\left(\alpha_{5}-\beta_{5}+y(t)\right) P_{5}, m(t)=$ $P_{5}^{0} \exp \left\{\left(\alpha_{5}-\beta_{5}\right) t\right\}, \sigma^{2}(t)=P_{5}^{0} \exp \left\{2\left(\alpha_{5}-\beta_{5}\right) t\right\}\left(\exp \left\{\sigma^{2} t\right\}-1\right), \alpha_{5}, \beta_{5}$ are growth rate and mortality of commercial fish; $\gamma=\alpha_{5}-\beta_{5}, P_{5}^{0}$ is the concentration of P_{5} at initial time; $m(t), \sigma^{2}(t)$ are mathematical expectation and variance of fluctuations $y(t)$. Then, the probability of degeneration of Abramis brama increases over time at $\gamma<\sigma^{2}$, tending to unity in the limit - the population is probabilistically unstable, i.e. a sufficiently prolonged exposure to disturbances (penetration and ingestion of micro- and nanoplastics particles by fish) can most likely lead to its death. The probability of degeneration decreases at $\gamma>\sigma^{2}$ and tends to zero at $t \rightarrow \infty$ - the population is stable in this sense.

СПИСОК ЛИТЕРАТУРЫ

[1] A. Yu. Perevaryukha, "Models of population process with delay and the scenario for adaptive resistance to invasion", Computer Research and Modeling, 14 (1) (2022), 147-161. DOI:10.20537/2076-7633-2022-14-1-147-161.

[^0]
[^0]: ${ }^{1}$ The study was supported by the Russian Science Foundation grant No. 22-11-00295, https://rscf.ru/en/project/22-11-00295/.

